بایگانی برچسب: s

کارشناسی ارشد مخابرات سیستم ( پیاده سازی بلادرنگ کدک صحبت استاندارد G.728بر روی پردازنده TMS320C5402 )

کدک صحبت استاندارد G728 ، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G728 بصورت دوطرفه کامل ( Full Duplex ) بر روی پردازنده TMS320C5402 می پردازیم
دسته بندی برنامه نویسی
فرمت فایل doc
حجم فایل 908 کیلو بایت
تعداد صفحات فایل 106

کارشناسی ارشد مخابرات سیستم ( پیاده سازی بلادرنگ کدک صحبت استاندارد G.728بر روی پردازنده TMS320C5402 )

فروشنده فایل

کد کاربری 8044

چکیده

کدک صحبت استاندارد G.728 ، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است. در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G.728 بصورت دوطرفه کامل ( Full Duplex ) بر روی پردازنده TMS320C5402 می پردازیم .

روشی ترکیبی برای برنامه نویسی TMS ارائه می شود که در آن زمان وپیچیدگی برنامه نویسی نسبت به برنامه نویسی دستی به 30% کاهش می یابد . در این روش پس از برنامه نویسی و شبیه سازی ممیزثابت الگوریتم کدک به زبان C ، با استفاده از نرم افزار ( Code Composer Studio ) CCS ، برنامه به زبان اسمبلی ترجمه شده و بهینه سازی دستی در کل کد اسمبلی صورت می گیرد . سپس بعضی از توابع مهم برنامه از نظر MIPS ، بصورت دستی به زبان اسمبلی بازنویسی می شوند تا برنامه بصورت بلادرنگ قابل اجرا گردد . در پایان نتایج این پیاده سازی ارائه می شود .

فهرست

مقدمه 4

فصل 1 : بررسی و مدل سازی سیگنال صحبت

1-1- معرفی سیگنال صحبت 6

1-2- مدل سازی پیشگویی خطی 10

1-2-1- پنجره کردن سیگنال صحبت 11

1-2-2- پیش تاکید سیگنال صحبت 13

1-2-3- تخمین پارامترهای LPC 14

فصل 2 : روش ها و استانداردهای کدینگ صحبت

2-1- مقدمه 15

2-2- روش های کدینگ 19

2-2-1- کدرهای شکل موج 21

2-2-2- کدرهای صوتی 22

2-2-3- کدرهای مختلط 24

الف- کدرهای مختلط حوزه فرکانس 27

ب- کدرهای مختلط حوزه زمان 29

فصل 3 : کدر کم تاخیر LD-CELP

3-1- مقدمه 34

3-2- بررسی کدرکم تاخیر LD-CELP 36

3-2-1- LPC معکوس مرتبه بالا 39

3-2-2- فیلتر وزنی شنیداری 42

3-2-3- ساختار کتاب کد 42

3-2-3-1- جستجوی کتاب کد 43

3-2-4- شبه دیکدر 45

3-2-5- پست فیلتر 46

فصل 4 : شبیه سازی ممیزثابت الگوریتم به زبان C

4-1- مقدمه 49

4-2- ویژگی های برنامه نویسی ممیزثابت 50

4-3- ساده سازی محاسبات الگوریتم 53

4-3-1- تطبیق دهنده بهره 54

4-3-2- محاسبه لگاریتم معکوس 58

4-4- روندنمای برنامه 59

4-4-1- اینکدر 63

4-4-2- دیکدر 69

فصل 5 : پیاده سازی الگوریتم برروی DSP

5-1- مقدمه 74

5-2- مروری بر پیاده سازی بلادرنگ 75

5-3- چیپ های DSP 76

5-3-1- DSP های ممیزثابت 77

5-3-2- مروری بر DSP های خانواده TMS320 78

5-3-2-1- معرفی سری TMS320C54x 79

5-4- توسعه برنامه بلادرنگ 81

5-5- اجرای برنامه روی برد توسعه گر C5402 DSK 82

5-5-1- بکارگیری ابزارهای توسعه نرم افزار 84

5-5-2- استفاده از نرم افزارCCS 86

5-5-3- نتایج پیاده سازی 94

5-6- نتیجه گیری و پیشنهاد 97

ضمائم

– ضمیمه (الف) : دیسکت برنامه های شبیه سازی ممیز ثابت به زبان C و

پیاده سازی کدک به زبان اسمبلی – ضمیمه (ب) : مقایسه برنامه نویسی C و اسمبلی 98

مراجع 103

مقدمه

امروزه در عصر ارتباطات و گسترش روزافزون استفاده از شبكه های تلفن ،موبایل و اینترنت در جهان ومحدودیت پهنای باند در شبكه های مخابراتی ، كدینگ و فشرده سازی صحبت امری اجتناب ناپذیر است . در چند دهه اخیر روشهای كدینگ مختلفی پدیدآمده اند ولی بهترین و پركاربردترین آنها كدك های آنالیزباسنتز هستند كه توسط Atal & Remedeدر سال 1982 معرفی شدند [2] . اخیرا مناسبترین الگوریتم برای كدینگ صحبت با كیفیت خوب در نرخ بیت های پائین و زیر 16 kbps ، روش پیشگویی خطی باتحریك كد (CELP) می باشد كه در سال 1985 توسط Schroeder & Atal معرفی شد [8] و تا كنون چندین استاندارد مهم كدینگ صحبت بر اساس CELP تعریف شده اند .

در سال 1988 CCITT برنامه ای برای استانداردسازی یك كدك 16 kbps با تاخیراندك و كیفیت بالا در برابر خطاهای كانال آغاز نمود و برای آن كاربردهای زیادی همچون شبكه PSTN ،ISDN ،تلفن تصویری و غیره در نظر گرفت . این كدك در سال 1992 توسط Chen et al. تحت عنوان LD-CELP معرفی شد[6] و بصورت استاندارد G.728 در آمد[9] و در سال 1994 مشخصات ممیز ثابت این كدك توسط ITU ارائه شد[10] . با توجه به كیفیت بالای این كدك كه در آن صحبت سنتزشده از صحبت اولیه تقریبا غیرقابل تشخیص است و كاربردهای آن در شبكه های تلفن و اینترنت و ماهواره ای در این گزارش به پیاده سازی این كدك می پردازیم .

در فصل اول به معرفی وآنالیز سیگنال صحبت پرداخته می شود و در فصل دوم روش ها و استانداردهای كدینگ بیان می شوند . در فصل سوم كدك LD-CELP را بیشتر بررسی می كنیم و در فصل چهارم شبیه سازی ممیز ثابت الگوریتم به زبان C را بیان می نمائیم. ودر پایان در فصل 5 به نحوه پیاده سازی بلادرنگ كدكG.728 بر روی پردازنده TMS320C5402 می پردازیم.

فصل 1

بررسی و مدل سازی سیگنال صحبت

1-1 –معرفی سیگنال صحبت

صحبت در اثر دمیدن هوا از ریه ها به سمت حنجره و فضای دهان تولید می‏شود. در طول این مسیر در انتهای حنجره، تارهای صوتی[1] قرار دارند. فضای دهان را از بعد از تارهای صوتی ، لوله صوتی[2] می‏نا مند كه در یك مرد متوسط حدود cm 17 طول دارد . در تولید برخی اصوات تارهای صوتی كاملاً باز هستند و مانعی بر سر راه عبور هوا ایجاد نمی‏كنند كه این اصوات را اصطلاحاً اصوات بی واك [3] می‏نامند. در دسته دیگر اصوات ، تارهای صوتی مانع خروج طبیعی هوا از حنجره می‏گردند كه این باعث به ارتعاش درآمدن تارها شده و هوا به طور غیر یكنواخت و تقریباً پالس شكل وارد فضای دهان می‏شود. این دسته از اصوات را اصطلاحاً باواك[4] می‏گویند.

فركانس ارتعاش تارهای صوتی در اصوات باواك را فركانس Pitch و دوره تناوب ارتعاش تارهای صوتی را پریود Pitch می‏نامند. هنگام انتشار امواج هوا در لوله صوتی، طیف فركانس این امواج توسط لوله صوتی شكل می‏گیرد و بسته به شكل لوله ، پدیده تشدید در فركانس های خاصی رخ می‏دهد كه به این فركانس های تشدید فرمنت[5] می‏گویند.

از آنجا كه شكل لوله صوتی برای تولید اصوات مختلف، متفاوت است پس فرمنت ها برای اصوات گوناگون با هم فرق می‏كنند. با توجه به اینكه صحبت یك فرآیند متغییر با زمان است پس پارامترهای تعریف شده فوق اعم از فرمنت ها و پریود Pitch در طول زمان تغییر می‏كنند به علاوه مد صحبت به طور نامنظمی از باواك به بی واك و بالعكس تغییر می‏كند. لوله صوتی ، همبستگی های زمان-كوتاه ، در حدود 1 ms ، درون سیگنال صحبت را در بر می‏گیرد. و بخش مهمی از كار كدكننده های صوتی مدل كردن لوله صوتی به صورت یك فیلتر زمان-كوتاه می‏باشد. همان طور كه شكل لوله صوتی نسبتاً آهسته تغییر می‏كند، تابع انتقال این فیلتر مدل كننده هم نیاز به تجدید[6] ، معمولاً در هر 20ms یکبارخواهد داشت.

در شكل (1-1 الف) یك قطعه صحبت باواك كه با فركانس 8KHz نمونه برداری شده است دیده می‏شود. اصوات باواك دارای تناوب زمان بلند به خاطر پریود Pitch هستند كه نوعاً بین 2ms تا 20ms می‏باشد. در اینجا پریود Pitch در حدود 8ms یا 64 نمونه است. چگالی طیف توان این قطعه از صحبت در شكل (1-1 ب) دیده می‏شود[3].

اصوات بی واك نتیجه تحریك نویز مانند لوله صوتی هستند و تناوب زمان- بلند اندكی را در بر دارند ، همانگونه كه در شكل های (1-1 ج) و (1-1 د) دیده می‏شود ولی همبستگی زمان كوتاه به خاطر لوله صوتی در آنها هنوز وجود دارد

پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

چکیده

کدک صحبت استاندارد G728 ، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G728 بصورت دوطرفه کامل ( Full Duplex ) بر روی پردازنده TMS320C5402 می پردازیم

دسته بندی کامپیوتر و IT
بازدید ها 0
فرمت فایل doc
حجم فایل 897 کیلو بایت
تعداد صفحات فایل 102

پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

فروشنده فایل

کد کاربری 4421

کاربر

پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402


چکیده:

کدک صحبت استاندارد G.728 ، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است. در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G.728 بصورت دوطرفه کامل ( Full Duplex ) بر روی پردازنده TMS320C5402 می پردازیم .

روشی ترکیبی برای برنامه نویسی TMS ارائه می شود که در آن زمان وپیچیدگی برنامه نویسی نسبت به برنامه نویسی دستی به 30% کاهش می یابد . در این روش پس از برنامه نویسی و شبیه سازی ممیزثابت الگوریتم کدک به زبان C ، با استفاده از نرم افزار ( Code Composer Studio ) CCS ، برنامه به زبان اسمبلی ترجمه شده و بهینه سازی دستی در کل کد اسمبلی صورت می گیرد . سپس بعضی از توابع مهم برنامه از نظر MIPS ، بصورت دستی به زبان اسمبلی بازنویسی می شوند تا برنامه بصورت بلادرنگ قابل اجرا گردد . در پایان نتایج این پیاده سازی ارائه می شود .


فهرست

مقدمه 4

فصل 1 : بررسی و مدل سازی سیگنال صحبت

1-1- معرفی سیگنال صحبت 6

1-2- مدل سازی پیشگویی خطی 10

1-2-1- پنجره کردن سیگنال صحبت 11

1-2-2- پیش تاکید سیگنال صحبت 13

1-2-3- تخمین پارامترهای LPC 14

فصل 2 : روش ها و استانداردهای کدینگ صحبت

2-1- مقدمه 15

2-2- روش های کدینگ 19

2-2-1- کدرهای شکل موج 21

2-2-2- کدرهای صوتی 22

2-2-3- کدرهای مختلط 24

الف- کدرهای مختلط حوزه فرکانس 27

ب- کدرهای مختلط حوزه زمان 29

فصل 3 : کدر کم تاخیر LD-CELP

3-1- مقدمه 34

3-2- بررسی کدرکم تاخیر LD-CELP 36

3-2-1- LPC معکوس مرتبه بالا 39

3-2-2- فیلتر وزنی شنیداری 42

3-2-3- ساختار کتاب کد 42

3-2-3-1- جستجوی کتاب کد 43

3-2-4- شبه دیکدر 45

3-2-5- پست فیلتر 46

فصل 4 : شبیه سازی ممیزثابت الگوریتم به زبان C

4-1- مقدمه 49

4-2- ویژگی های برنامه نویسی ممیزثابت 50

4-3- ساده سازی محاسبات الگوریتم 53

4-3-1- تطبیق دهنده بهره 54

4-3-2- محاسبه لگاریتم معکوس 58

4-4- روندنمای برنامه 59

4-4-1- اینکدر 63

4-4-2- دیکدر 69

فصل 5 : پیاده سازی الگوریتم برروی DSP

5-1- مقدمه 74

5-2- مروری بر پیاده سازی بلادرنگ 75

5-3- چیپ های DSP 76

5-3-1- DSP های ممیزثابت 77

5-3-2- مروری بر DSP های خانواده TMS320 78

5-3-2-1- معرفی سری TMS320C54x 79

5-4- توسعه برنامه بلادرنگ 81

5-5- اجرای برنامه روی برد توسعه گر C5402 DSK 82

5-5-1- بکارگیری ابزارهای توسعه نرم افزار 84

5-5-2- استفاده از نرم افزارCCS 86

5-5-3- نتایج پیاده سازی 94

5-6- نتیجه گیری و پیشنهاد 97

ضمائم

– ضمیمه (الف) : دیسکت برنامه های شبیه سازی ممیز ثابت به زبان C و پیاده سازی کدک به زبان اسمبلی

– ضمیمه (ب) : مقایسه برنامه نویسی C و اسمبلی

مراجع 103

بررسی سیستم پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

بررسی پیاده سازی بلادرنگ کدک صحبت استاندارد G728
دسته بندی برق
بازدید ها 1
فرمت فایل docx
حجم فایل 850 کیلو بایت
تعداد صفحات فایل 101

بررسی سیستم پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

فروشنده فایل

کد کاربری 4674

کاربر

بررسی سیستم پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

چکیده
کدک صحبت استاندارد G.728 ، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است. در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G.728 بصورت دوطرفه کامل ( Full Duplex ) بر روی پردازنده TMS320C5402 می پردازیم .
روشی ترکیبی برای برنامه نویسی TMS ارائه می شود که در آن زمان وپیچیدگی برنامه نویسی نسبت به برنامه نویسی دستی به 30% کاهش می یابد . در این روش پس از برنامه نویسی و شبیه سازی ممیزثابت الگوریتم کدک به زبان C ، با استفاده از نرم افزار ( Code Composer Studio ) CCS ، برنامه به زبان اسمبلی ترجمه شده و بهینه سازی دستی در کل کد اسمبلی صورت می گیرد . سپس بعضی از توابع مهم برنامه از نظر MIPS ، بصورت دستی به زبان اسمبلی بازنویسی می شوند تا برنامه بصورت بلادرنگ قابل اجرا گردد . در پایان نتایج این پیاده سازی ارائه می شود .
کلمات کلیدی

کدینگ و فشرده سازی صحبت

پیاده سازی بلادرنگ

DSP

TMS320C5402

برد DSK

مقدمه
امروزه در عصر ارتباطات و گسترش روزافزون استفاده از شبكه های تلفن ،موبایل و اینترنت در جهان ومحدودیت پهنای باند در شبكه های مخابراتی ، كدینگ و فشرده سازی صحبت امری اجتناب ناپذیر است . در چند دهه اخیر روشهای كدینگ مختلفی پدیدآمده اند ولی بهترین و پركاربردترین آنها كدك های آنالیزباسنتز هستند كه توسط Atal & Remedeدر سال 1982 معرفی شدند [2] . اخیرا مناسبترین الگوریتم برای كدینگ صحبت با كیفیت خوب در نرخ بیت های پائین و زیر 16 kbps ، روش پیشگویی خطی باتحریك كد (CELP) می باشد كه در سال 1985 توسط Schroeder & Atal معرفی شد [8] و تا كنون چندین استاندارد مهم كدینگ صحبت بر اساس CELP تعریف شده اند .
در سال 1988 CCITT برنامه ای برای استانداردسازی یك كدك 16 kbps با تاخیراندك و كیفیت بالا در برابر خطاهای كانال آغاز نمود و برای آن كاربردهای زیادی همچون شبكه PSTN ،ISDN ،تلفن تصویری و غیره در نظر گرفت . این كدك در سال 1992 توسط Chen et al. تحت عنوان LD-CELP معرفی شد[6] و بصورت استاندارد G.728 در آمد[9] و در سال 1994 مشخصات ممیز ثابت این كدك توسط ITU ارائه شد[10] . با توجه به كیفیت بالای این كدك كه در آن صحبت سنتزشده از صحبت اولیه تقریبا غیرقابل تشخیص است و كاربردهای آن در شبكه های تلفن و اینترنت و ماهواره ای در این گزارش به پیاده سازی این كدك می پردازیم .
در فصل اول به معرفی وآنالیز سیگنال صحبت پرداخته می شود و در فصل دوم روش ها و استانداردهای كدینگ بیان می شوند . در فصل سوم كدك LD-CELP را بیشتر بررسی می كنیم و در فصل چهارم شبیه سازی ممیز ثابت الگوریتم به زبان C را بیان می نمائیم. و در پایان در فصل 5 به نحوه پیاده سازی بلادرنگ كدكG.728 بر روی پردازنده TMS320C5402 می پردازیم.
فهرست
– مقدمه 4

فصل 1 : بررسی و مدل سازی سیگنال صحبت

1-1- معرفی سیگنال صحبت 6
1-2- مدل سازی پیشگویی خطی 10
1-2-1- پنجره کردن سیگنال صحبت 11
1-2-2- پیش تاکید سیگنال صحبت 13
1-2-3- تخمین پارامترهای LPC 14

فصل 2 : روش ها و استانداردهای کدینگ صحبت

2-1- مقدمه 15
2-2- روش های کدینگ 19
2-2-1- کدرهای شکل موج 21
2-2-2- کدرهای صوتی 22
2-2-3- کدرهای مختلط 24
الف- کدرهای مختلط حوزه فرکانس 27
ب- کدرهای مختلط حوزه زمان 29

فصل 3 : کدر کم تاخیر LD-CELP

3-1- مقدمه 34
3-2- بررسی کدرکم تاخیر LD-CELP 36
3-2-1- LPC معکوس مرتبه بالا 39
3-2-2- فیلتر وزنی شنیداری 42
3-2-3- ساختار کتاب کد 42
3-2-3-1- جستجوی کتاب کد 43
3-2-4- شبه دیکدر 45
3-2-5- پست فیلتر 46

فصل 4 : شبیه سازی ممیزثابت الگوریتم به زبان C

4-1- مقدمه 49
4-2- ویژگی های برنامه نویسی ممیزثابت 50
4-3- ساده سازی محاسبات الگوریتم 53
4-3-1- تطبیق دهنده بهره 54
4-3-2- محاسبه لگاریتم معکوس 58
4-4- روندنمای برنامه 59
4-4-1- اینکدر 63
4-4-2- دیکدر 69

فصل 5 : پیاده سازی الگوریتم برروی DSP

5-1- مقدمه 74
5-2- مروری بر پیاده سازی بلادرنگ 75
5-3- چیپ های DSP 76
5-3-1- DSP های ممیزثابت 77
5-3-2- مروری بر DSP های خانواده TMS320 78
5-3-2-1- معرفی سری TMS320C54x 79
5-4- توسعه برنامه بلادرنگ 81
5-5- اجرای برنامه روی برد توسعه گر C5402 DSK 82
5-5-1- بکارگیری ابزارهای توسعه نرم افزار 84
5-5-2- استفاده از نرم افزارCCS 86
5-5-3- نتایج پیاده سازی 94
5-6- نتیجه گیری و پیشنهاد 97
– ضمائم
– ضمیمه (الف) : دیسکت برنامه های شبیه سازی ممیز ثابت به زبان C و
پیاده سازی کدک به زبان اسمبلی
– ضمیمه (ب) : مقایسه برنامه نویسی C و اسمبلی 98
– مراجع 103

مقاله پردازشگری دیجیتال یا (DSP)

مقاله پردازشگری دیجیتال یا (DSP) در 13 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 0
فرمت فایل doc
حجم فایل 238 کیلو بایت
تعداد صفحات فایل 13

مقاله پردازشگری دیجیتال یا (DSP)

فروشنده فایل

کد کاربری 6017

کاربر

مقاله پردازشگری دیجیتال یا (DSP) در 13 صفحه ورد قابل ویرایش

مقدمه

بخش مخابرات هوایی از مهمترین و اصلی ترین بخش هاست و زیرسیستم های یك سیستم هوایی را تشكیل می دهد. درحوزه صنعت هوایی و ناوبری، گیرنده ها و فرستنده های رادیویی نقش اساسی را دربخش مخابراتی برعهده دارند بخش مخابرات از سه بخش اساسی گیرنده، فرستنده و كانال مخابراتی تشكیل شده است كه دراین مقاله بیشتر به پردازش سیگنالهای گسسته درزمان می پردازیم كه در گیرنده ها و فرستنده های مخابراتی نقش اساسی را ایفا می كنند گیرنده های رادیویی نقش اساس درآشكارسازی، آنالیز، شنود و جهت یابی سیگنالهای دریافتی داشته كه عمدتاً از نوع سوپرهیتروداین استفاده می شود.

علاوه بر سیستم های رادیویی، بسیاری از انواع سیتمها برای ارسال دیتاهای با ارزش، از سیگنال های رادیویی RF استفاده می كنند كه دارای رشدی مداوم ، پیوسته و قابل توجه هستند، گیرنده های هوایی برای انواع مختلفی از كاربردها و حوزه ای عملیاتی طراحی و بنا به نیاز، بصورت انفرادی و یا عمدتاً درقالب سیستم بكارگیری می شوند كه عمده اهداف و مقاصد این نوع گیرنده ها برای ارتباطات هوایی یا زمین به هوا و بالعكس انجام می شود عمده تعاریف به كاررفته درمخابرات هوایی یا دركل، مخابرات:

رنج دینامیكی : رنج از كمترین تا بیشترین سیگنالهای ورودی برحسب dB، كه یك گیرنده می تواند احساس كند بطور مثال اگر یك گیرنده قادر به آشكارسازی ، سیگنالهای بین dB 10 و dB50- باشد در این صورت رنج دینامیكی گیرنده dB 60 خواهد بود.

-پهنای باند لحظه ای : پهنای باند گیرند درهر نقطه معلوم از زمان (كه اساساً كمتر از پهنای باندكلی سیستم برای هرگیرنده می باشد.

-حساسیت یا Sensitivity: كمترین سطح توان سیگنال دریافتی كه هر گیرنده قادر به آشكارسازی آن می باشد را گویندكه (برحسب dBm اندازه گیری می شود)

-پهنای باند رادیویی كل : رنج فركانسی كه گیرنده قادر به آشكارسازی آنها می باشد راگویند.

-توانایی پردازش چندین سیگنال: میزان قابلیت و توانایی گیرنده درتشخیص و تمیز دادن بین دو سیگنال راداری درفركانس های متفاوت در درون پهنای باند لحظه‌ای یك گیرنده

پردازشگرهای دیجیتالی درگیرنده های دیجیتالی

به دلیل استفاده از تكنیك سوپرهیتروداین درگیرنده های دیجیتالی ابتدا به مقدمه ای از این گیرنده ها می پردازیم سپس گیرنده های دیجیتالی را شرح داده و سپس به پردازشگر دیجیتالی كه مهمترین قسمت این بخش از گیرنده هاست می پردازیم.

گیرنده های سوپرهیتروداین:

گیرنده های سوپرهیتروداین از رایجترین و پركاربردترین نوع گیرنده ها درجهان برای تقریباً همه سیستم های دریافت رادیویی و راداری با بهره گیری از ساختار سوپرهیت می باشد. درگیرنده سوپرهیت نیاز به تقویت كننده رادیویی باند پهن برای اصلاح حساسیت نیست بلكه به جای آن، سیگنال [1]RF با استفاده از یك مخلوط كننده یا میكسر و یك نوسان ساز محلی[2] به یك فركانس میانی[3] تبدیل و سپس با استفاده از یك تقویت كننده IF، گین با بهره مورد نیاز بدست می آید. سیگنال تبدیل شده به فركانس پائین[4] ازمیان یك فیلتر میان گذر[5] عبور می كند، این فیلتر باعث عبور بودن تضعیف سیگنال مورد نظر شده و سایر سیگنالهای ناخواسته بویژه سیگنالهای ناشی از حاصلضرب های فركانسی كه باعث تولید اعوجاج اینترمدولاسیون و در نتیجه سیگنال نامطلوب می شوند را حذف می نماید و آنها را عبور نمی دهد.

مزیت تبدیل سیگنال RF به یك سیگنال IF با فركانس پائین تر به روش سوپرهیت این است كه فیلتر ها و تقویت كننده هایی با پهنای باند باریك و با مشخصه های فركانس قطع[6] نیز نیازمند است كه درفركانس های IF به راحتی در درسترس است به همین دلیل گیرنده های سوپرهیتروداین دارای حساسیت بالا و انتخاب گری[7] فركانس بسیار خوبی است كه باعث ایده آل بودن آنها برای آنالیز دقیق و جزئی مشخصه های سیگنال دریافتی است. هرچند بسبب بالا بودن سطح انتخابگری فركانس این گیرنده معمولاً دارای پهنای باند فركانس لحظه ای باریك بوده و قادر نیست چندین سیگنال ورودی را بطورهمزمان كنترل و پردازش نماید. در زمینه پردازش بعداً مفصلاً بحث خواهد شد.

خواص تبدیل فوریه گسسته

در این بخش ما شماری از خواص DFT را با توجه به دنباله های محدود درزمان در نظر میگیریم. بحث ما درموازات با بحث موجود درابطه با دنباله های متناوب به پیش می رود. بهرحال: این حضور ویژه به عكس العمل فرضیات موجود می پردازد و اشاره ای به تناوب نمایش DFT از دنباله های كراندار دارد.

حالت خطی

اگر دو دنباله محدود درزمان X1[n] و X2[n] درحالت خطی با هم تركیب شوند، به عبارتی داریم :

x3[n]=ax1[n]+bx2[n]

سپس DFT متعلق به x3[n] خواهد بود:

x3[k]=aX1[k]+bX2[k]

به وضوح، اگر x1[n] دارای طول N1 و x2[n] دارای طول N2 باشد، سپس حداكثر طول x3[n] به صورت N3[k]=max[N1,N2] خواهد بود. بنابراین، به این خاطر كه معادله گفته شده با معنی باشد، هر دو مورد DFTs باید با همان طول محاسبه شود.

اگربرای مثال باشد، پس x1[k]، DFT دنباله x1[n] می باشد كه به وسیله نواحی تقویت شده است. یعنی، به عبارتی، نقطه متعلق به DFT برابراست با:

و نقطه N2 متعلق به DFT از X1[n] برابر است با :

درخلاصه داریم :

درجاییكه طول دنباله ها و تبدیل های فوریه گسسته همه برابر با حداكثر طول X1[n] و X2[n] می باشند. البته، طول بیشتر DFTs می تواند بوسیله تقویت هردو دنباله با نمونه های دارای ارزش صفر تقویت شود.

نتیجه گیری

با توجه به گسترش سیستمهای دیجیتالی درتمامی زمینه ها كه منجز به كوچك شدن قطعات و تجهیزات و همچنین كاهش حجم و سرعت بالای پردازشگرها دراینگونه سیستمها و مقاوم بودن تجهیزات دیجیتالی درمقابل تداخل و خطاها به دلیل فریمهای تشخیص و تصحیح خط درگیرنده كه در فرستنده پیش بینی شده اند جا دارد كه این زمینه ازعلم و صنعت درصنایع هوایی نیز مورد استفاده قرارگیرند چرا كه صنعت هوایی بیشتر از صنایع دیگر به این قبیل از مزایا نیازمند است بخصوص حجم و وزن كم تجهیزات درصنایع هوایی یكی از اهداف مهندسان و طراحان این صنعت می باشد.

پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

کدک صحبت استاندارد G728، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G728 بصورت دوطرفه کامل ( Full Duplex )بر روی پردازنده TMS320C5402 می پردازیم
دسته بندی کامپیوتر و IT
بازدید ها 77
فرمت فایل doc
حجم فایل 914 کیلو بایت
تعداد صفحات فایل 103

پیاده سازی بلادرنگ کدک صحبت استاندارد G.728 بر روی پردازنده TMS320C5402

فروشنده فایل

کد کاربری 15

کاربر

کدک صحبت استاندارد G.728، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت 16 kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است. در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G.728 بصورت دوطرفه کامل ( Full Duplex )بر روی پردازنده TMS320C5402 می پردازیم .

روشی ترکیبی برای برنامه نویسی TMS ارائه می شود که در آن زمان وپیچیدگی برنامه نویسی نسبت به برنامه نویسی دستی به 30% کاهش می یابد . در این روش پس از برنامه نویسی و شبیه سازی ممیزثابت الگوریتم کدک به زبان C ، با استفاده از نرم افزار ( Code Composer Studio ) CCS، برنامه به زبان اسمبلی ترجمه شده و بهینه سازی دستی در کل کد اسمبلی صورت می گیرد . سپس بعضی از توابع مهم برنامه از نظر MIPS ، بصورت دستی به زبان اسمبلی بازنویسی می شوند تا برنامه بصورت بلادرنگ قابل اجرا گردد . در پایان نتایج این پیاده سازی ارائه می شود .

کلمات کلیدی

کدینگ و فشرده سازی صحبت ، پیاده سازی بلادرنگ ، DSP ، TMS320C5402 ، برد DSK

فهرست مطالب

– مقدمه 4

فصل 1 : بررسی و مدل سازی سیگنال صحبت

1-1- معرفی سیگنال صحبت 6

1-2- مدل سازی پیشگویی خطی 10

1-2-1- پنجره کردن سیگنال صحبت 11

1-2-2- پیش تاکید سیگنال صحبت 13

1-2-3- تخمین پارامترهای LPC 14

فصل 2 : روش ها و استانداردهای کدینگ صحبت

2-1- مقدمه 15

2-2- روش های کدینگ 19

2-2-1- کدرهای شکل موج 21

2-2-2- کدرهای صوتی 22 2-2-3- کدرهای مختلط 24

الف- کدرهای مختلط حوزه فرکانس 27

ب- کدرهای مختلط حوزه زمان 29

فصل 3 : کدر کم تاخیر LD-CELP

3-1- مقدمه 34

3-2- بررسی کدرکم تاخیر LD-CELP 36

3-2-1- LPC معکوس مرتبه بالا 39

3-2-2- فیلتر وزنی شنیداری 42

3-2-3- ساختار کتاب کد 42

3-2-3-1- جستجوی کتاب کد 43

3-2-4- شبه دیکدر 45

3-2-5- پست فیلتر 46

فصل 4 : شبیه سازی ممیزثابت الگوریتم به زبان C

4-1- مقدمه 49

4-2- ویژگی های برنامه نویسی ممیزثابت 50

4-3- ساده سازی محاسبات الگوریتم 53

4-3-1- تطبیق دهنده بهره 54

4-3-2- محاسبه لگاریتم معکوس 58

4-4- روندنمای برنامه 59

4-4-1- اینکدر 63

4-4-2- دیکدر 69

فصل 5 : پیاده سازی الگوریتم برروی DSP

5-1- مقدمه 74

5-2- مروری بر پیاده سازی بلادرنگ 75

5-3- چیپ های DSP 76

5-3-1- DSP های ممیزثابت 77

5-3-2- مروری بر DSP های خانواده TMS320 78

5-3-2-1- معرفی سری TMS320C54x 79

5-4- توسعه برنامه بلادرنگ 81

5-5- اجرای برنامه روی برد توسعه گر C5402 DSK 82

5-5-1- بکارگیری ابزارهای توسعه نرم افزار 84

5-5-2- استفاده از نرم افزارCCS 86

5-5-3- نتایج پیاده سازی 94

5-6- نتیجه گیری و پیشنهاد 97

– ضمائم

– ضمیمه (الف) : دیسکت برنامه های شبیه سازی ممیز ثابت به زبان C و

پیاده سازی کدک به زبان اسمبلی – ضمیمه (ب) : مقایسه برنامه نویسی C و اسمبلی 98

– مراجع103